@built-in-ai
@built-in-ai/web-llm

useChat Integration

Integrate @built-in-ai/web-llm with the useChat hook in AI SDK v6

Overview

When using this library with the useChat hook, you'll need to create a custom transport implementation to handle client-side AI with download progress. This is not required, but it makes it easier for you to build better user experiences.

Complete Transport Example

import {
  ChatTransport,
  UIMessageChunk,
  streamText,
  convertToModelMessages,
  ChatRequestOptions,
  createUIMessageStream,
  tool,
  stepCountIs,
} from "ai";
import {
  WebLLMProgress,
  WebLLMUIMessage,
  WebLLMLanguageModel,
} from "@built-in-ai/web-llm";
import z from "zod";

export const createTools = () => ({
  webSearch: tool({
    description:
      "Search the web for information when you need up-to-date information or facts not in your knowledge base. Use this when the user asks about current events, recent developments, or specific factual information you're unsure about.",
    inputSchema: z.object({
      query: z
        .string()
        .describe("The search query to find information on the web"),
    }),
    execute: async ({ query }) => {
      // ...
    },
  }),
});

/**
 * Client-side chat transport AI SDK implementation that handles AI model communication
 * with in-browser AI capabilities.
 *
 * @implements {ChatTransport<WebLLMUIMessage>}
 */
export class WebLLMChatTransport implements ChatTransport<WebLLMUIMessage> {
  private readonly model: WebLLMLanguageModel;
  private tools: ReturnType<typeof createTools>;

  constructor(model: WebLLMLanguageModel) {
    this.model = model;
    this.tools = createTools();
  }

  async sendMessages(
    options: {
      chatId: string;
      messages: WebLLMUIMessage[];
      abortSignal: AbortSignal | undefined;
    } & {
      trigger: "submit-message" | "submit-tool-result" | "regenerate-message";
      messageId: string | undefined;
    } & ChatRequestOptions,
  ): Promise<ReadableStream<UIMessageChunk>> {
    const { messages, abortSignal } = options;
    const prompt = convertToModelMessages(messages);
    const model = this.model;

    return createUIMessageStream<WebLLMUIMessage>({
      execute: async ({ writer }) => {
        let downloadProgressId: string | undefined;
        const availability = await model.availability();

        // Only track progress if model needs downloading
        if (availability !== "available") {
          await model.createSessionWithProgress((progress: WebLLMProgress) => {
            const percent = Math.round(progress.progress * 100);

            if (progress.progress >= 1) {
              if (downloadProgressId) {
                writer.write({
                  type: "data-modelDownloadProgress",
                  id: downloadProgressId,
                  data: {
                    status: "complete",
                    progress: 100,
                    message:
                      "Model finished downloading! Getting ready for inference...",
                  },
                });
              }
              return;
            }

            if (!downloadProgressId) {
              downloadProgressId = `download-${Date.now()}`;
            }

            writer.write({
              type: "data-modelDownloadProgress",
              id: downloadProgressId,
              data: {
                status: "downloading",
                progress: percent,
                message: `Downloading browser AI model... ${percent}%`,
              },
              transient: !downloadProgressId,
            });
          });
        }

        const result = streamText({
          model,
          tools: this.tools,
          stopWhen: stepCountIs(5),
          messages: prompt,
          abortSignal,
          onChunk: (event) => {
            if (event.chunk.type === "text-delta" && downloadProgressId) {
              writer.write({
                type: "data-modelDownloadProgress",
                id: downloadProgressId,
                data: { status: "complete", progress: 100, message: "" },
              });
              downloadProgressId = undefined;
            }
          },
        });

        writer.merge(result.toUIMessageStream({ sendStart: false }));
      },
    });
  }

  async reconnectToStream(
    options: {
      chatId: string;
    } & ChatRequestOptions,
  ): Promise<ReadableStream<UIMessageChunk> | null> {
    // Client-side AI doesn't support stream reconnection
    return null;
  }
}

Basic Transport Structure

Here's a simplified example of how to structure a custom transport:

import {
  ChatTransport,
  UIMessageChunk,
  streamText,
  convertToModelMessages,
  ChatRequestOptions,
} from "ai";
import {
  WebLLMLanguageModel,
  WebLLMUIMessage,
} from "@built-in-ai/web-llm";

// This class won't stream back data parts with the download progress if
// the model hasn't yet been downloaded
export class SimpleWebLLMChatTransport
  implements ChatTransport<WebLLMUIMessage>
{
  private readonly model: WebLLMLanguageModel;

  constructor(model: WebLLMLanguageModel) {
    this.model = model;
  }

  async sendMessages(
    options: {
      chatId: string;
      messages: WebLLMUIMessage[];
      abortSignal: AbortSignal | undefined;
    } & {
      trigger: "submit-message" | "submit-tool-result" | "regenerate-message";
      messageId: string | undefined;
    } & ChatRequestOptions,
  ): Promise<ReadableStream<UIMessageChunk>> {
    const prompt = convertToModelMessages(options.messages);

    const result = streamText({
      model: this.model,
      messages: prompt,
      abortSignal: options.abortSignal,
    });

    return result.toUIMessageStream();
  }

  async reconnectToStream(
    options: {
      chatId: string;
    } & ChatRequestOptions,
  ): Promise<ReadableStream<UIMessageChunk> | null> {
    // Client-side AI doesn't support stream reconnection
    return null;
  }
}

You can then use the useChat() hook in your components:

import { webLLM, WebLLMUIMessage } from "@built-in-ai/web-llm";

const model = webLLM("Qwen3-0.6B-q0f16-MLC", {
  worker: new Worker(new URL("./worker.ts", import.meta.url), {
    type: "module",
  }),
});

const {
  sendMessage,
  messages,
  stop,
} = useChat<WebLLMUIMessage>({
  transport: new WebLLMChatTransport(model),
});

In case the device is incompatible with local in-browser LLMs, and we want to use a server-side AI model, we can simply use the utility function from the package first:

import {
  webLLM,
  WebLLMUIMessage,
  doesBrowserSupportWebLLM,
} from "@built-in-ai/web-llm";

const model = webLLM("Qwen3-0.6B-q0f16-MLC", {
  worker: new Worker(new URL("./worker.ts", import.meta.url), {
    type: "module",
  }),
});

const {
  sendMessage,
  messages,
  stop,
} = useChat<WebLLMUIMessage>({
  transport: doesBrowserSupportWebLLM() // check for device compatibility
    ? new WebLLMChatTransport(model)
    : new DefaultChatTransport<UIMessage>({ 
        api: "/api/chat",
      }),
});

On this page